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Large Deviations for Probabilistic Cellular
Automata II
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We obtain an upper large deviations bound which shows that for some models
of probabilistic cellular automata (which are far away from the product case)
the lower large deviation bound derived in Eizenberg and Kifer J. Stat. Phys.
108: 1255–1280 (2002) is sharp, and so the corresponding large deviations phe-
nomena cannot be described via the traditional Donsker–Varadhan form of the
action functional. For models which are close to the product case we derive
approximate large deviations bounds using the Donsker–Varadhan functional
for the product case.
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1. INTRODUCTION

Let Xt, t ∈ Z
+, be a time homogeneous Markov chain with a compact

metric phase space �. Denote by M (�) the set of the probability Borel
measures defined on � equipped with the weak topology. Consider the
sequence of occupational measures

ζT = 1
T

T−1∑
t=0

δ (Xt ) , T ∈Z
+, (1.1)

where δ (x) is the unit measure concentrated at a point x ∈�. Due to the
well-known results of Donsker and Varadhan (7–9), under certain con-
ditions the asymptotic behavior of the occupational measures ζT obeys
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the large deviations principle with the action functional I : M (�)→ [0,∞]
defined for any ν ∈M(�) by the formula

I (ν)=−inf
{∫

�

log
(
Ex f (X1 )

f ( x )

)
ν (dx) : f ∈U1

}
, (1.2)

where U1 is the set of positive continuous functions defined on �. More
precisely, if the Markov chain Xt is a Feller processes, then for any closed
with respect to the week topology subset K of M (�),

lim sup
T→∞

lnPx {ζT ∈K}
T

�− inf
ν∈K

I (ν) (1.3)

uniformly with respect to x ∈� (see, for instance, ref. 8). Moreover, it is
known that under some additional conditions, such as, for instance, the
existence of continuous densities for transition probabilities of correspond-
ing Markov chains or, more generally, certain uniformity conditions for-
mulated in ref. 10, or irreducibility conditions formulated in refs. 1 and 2,
the following lower large deviations bound:

lim inf
T→∞

ln Px {ζT ∈U}
T

�− inf
ν∈U

I (ν) (1.4)

holds true for any open with respect to the weak topology subset
U of M (�) and for each x ∈ � (see also refs. 6, 10 and 16). Note
that under the latter conditions, the lower and upper bounds have
the same rate functionals so they are optimal for the corresponding
class of processes, and, moreover, they are uniform with respect to x ∈
�, or at least independent of the initial distribution of the Markov
chain.

However, as it was pointed out in ref. 14, such assumptions, fre-
quently, are not satisfied for a large class of Markov chains, usually called
probabilistic cellular automata (PCA), arising, for instance, as models
describing large system of automata or some interacting particle systems
(see, e.g., the earlier works on PCA such as refs. 19 and 20, as well, as
later papers: refs. 4, 5, 17 and 18). Moreover, we have conjectured in ref.
14, that for some natural examples of PCA the uniform lower bounds (1.4)
given by the Donsker–Varadhan action functional are not valid, while
the upper bounds (1.3) are not optimal (although they are surely valid),
and they can be improved by means of some alternative action functional
depending on the initial distribution of the Markov chain. Our conjecture
was supported only by some preliminary example (see Example 2 on page
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1272 of ref. 14), where the Markov chain has an unique invariant mea-
sure and the Donsker–Varadhan lower estimates failed only due to certain
degenerations.

Still, suggesting in ref. 14 the possibility of large deviations of a non
Donsker–Varadhan type we kept in mind, mainly, situations where the
Markov chain has more than one invariant measure. In such situations
the following legitimate question arises. Let µ0 and µ1 be two different
ergodic invariant measures of the corresponding PCA and U(µ1) is some
neighborhood of µ1 such that µ0 /∈U(µ1), then due to the ergodic theorem

lim
T→∞

Pµ0{ ζT ∈U(µ1) } =0, (1.5)

where Pµ0 is the probability distribution in the path space of the Markov
chain Xt with the initial distribution µ0. We find it interesting to estimate
the rate of convergence of Pµ0{ ζT ∈U(µ1) } to zero, in view of the fact that
the Donsker–Varadhan type upper bound (1.3) becomes useless in this situ-
ation, since I (ν)=0 for any invariant measure ν of the Markov chain (see,
for instance, ref. 8). This question is quite natural in the dynamical systems
setup (which can be viewed as very degenerate Markov processes) where
often there exist a lot of ergodic invariant measures (see ref. 16). In Section
2 we will formulate some general assumptions on Markov chains such that
the rate of convergence of Pµ0{ ζT ∈U(µ1) } to zero is exponential and it
depends on the initial distribution and formulate there our general results
describing this phenomena. We will apply these results to PCA in Section 3
postponing their proof till Section 5. In Section 4 we provide a specific class
of non-trivial examples of PCA (introduced by Wasserstein in ref. 20 for a
different purpose), where lower bounds of the Donsker–Varadhan type are
not valid. Moreover, we will show that for this model the lower bound of
ref. 14 together with the upper bound derived here give the optimal large
deviations estimates. On the other hand, in Section 6 we will describe a
class of PCA, which includes, in particular, the direct product of finite Mar-
kov chains, where the large deviations can be fully described by means of
the Donsker–Varadhan action functional defined in (1.2). Finally, in Section
7 we will obtain approximate large deviation estimates for Markov chains
which are small perturbations of the product Markov chain considered in
Section 6.

2. THE MAIN RESULTS: THE GENERAL CASE

All the results of the present paper are derived under the following
basic assumption:



848 Eizenberg and Kifer

A0. The process Xt, t ∈Z
+, is a time homogeneous Markov chain on

a phase space(�, B ), where � is a compact metric space, and B is the
Borel σ -algebra of �.

However, to obtain our upper large deviations bounds we should confine
ourselves to the Markov chains possessing the following special property:

A1. There exist a measure µ0∈M(�) invariant with respect to the Mar-
kov chain Xt and a sequence of finite open partitions �k of � such that
µ0(A ) > 0 for each A∈�k, k� 1, and for each ε > 0 one can choose a
sequence of positive integers t (k, ε), k�1 satisfying the following conditions:

lim
k→∞

t (k, ε)

k
= 1

and for any integer n, k� 1, and for any sequence fi : �→R , 0� i�n,of
�k-measurable functions,

Eµ0


 ∏

0�i�n
fi

(
Xi t(k,ε)

)� (1+ ε)n
∏

0�i�n
Eµ0fi.

Remark 2.1. In Section 3 we will describe a class of PCA for which
these assumptions hold true.

As it was pointed out in section, the purpose of this paper is to
obtain certain large deviation estimates for the occupational measures ζT
of the Markov chain Xt by means of the family of action functionals Sµ:
M(�)→ [0,∞] introduced in ref. 14, where µ is the corresponding initial
distribution of Xt . For readers’ convenience we will provide the indepen-
dent definition of Sµ here.

Recall (see ref. 11, Section 2.3), that for any two measures µ1, µ2 ∈
M(�) and each finite Borel partition �={Q1, Q2, . . . , Qn} of � the rela-
tive entropy of the partition �with measure µ1 with respect to µ2 is defined
by the formula

Hµ1‖µ2(�)=
n∑
i=1

µ1(Qi) ln
µ1 (Qi)

µ2 (Qi)
(2.1)

provided µ1(Qi)=0 whenever µ2(Qi)=0, and setting Hµ1‖µ2(�)=∞, oth-
erwise . Now we can define

Sµ2(µ1)= lim sup
k→∞

1
k
Hµ1‖µ2(�k) (2.2)

for any µ1, µ2 ∈M(�).



Large Deviations for Probabilistic Cellular Automata II 849

Remark 2.2. Observe, that our definition, generally speaking, dep-
ends on the choice of the sequence of partitions �k. We will return to the
discussion of this important point later in this section.

The most general upper large deviations bound of the present paper
is the following result whose proof will be given in Section 5.

Proposition 2.1. Suppose that a Markov chain Xt and a measure
µ0 ∈M(�) satisfy the assumptions A0 and A1. Then for each µ ∈M(�)
such that Sµ0(µ)<∞ and each ε > 0 there exists an open neighborhood
U(µ , ε) of µ such that

lim sup
T→∞

ln Pµ0{ ζT ∈U (µ, ε) }
T

�−( Sµ0(µ)− ε ) .

Moreover, if Sµ0(µ)=∞, then for each N >0 there exists an open neigh-
borhood U (µ , N) of µ such that

lim sup
T→∞

ln Pµ0{ ζT ∈U (µ , N) }
T

�−N.

Note. Let us emphasize the fact that µ is an arbitrary probability Borel
measure, not necessarily invariant with respect to the Markov chain.

Corollary 2.2. Suppose that a Markov chain Xt and a measure µ0 ∈
M(�) satisfy the assumptions A0 and A1. Then for any closed with respect
to the weak topology subset K ofM (�),

lim sup
T→∞

lnPµ0 {ζT ∈K}
T

�− inf
ν∈K

Sµ0(ν) (2.3)

Proof. The statement follows from Proposition 2.1 in the standard
way using the compactness argument.

Remark 2.3. In order to show that the estimates provided by Prop-
osition 2.1 and Corollary 2.2 have any significance, we must demonstrate
some example of a Markov chain Xt and of measures µ0, µ∈M(�) such
that Sµ0(µ) >I (µ), while this Markov chain and the initial distribution µ0
satisfy the assumptions A0 and A1. More specifically, as indicated in Sec-
tion 1, our upper bounds could be especially useful when µ is an invariant
measure with respect to the Markov chain Xt , since in this case I (µ)=0,
and, therefore, the Donsker–Varadhan type upper bounds are ineffective.
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Therefore, we have to provide examples, where µ is an invariant measure
with respect to Xt , while Sµ0(µ) > 0. In Section 3 we exhibit a natural
class of PCA, where this happens to be true. Yet, the most accomplished
results are achieved when µ is an ergodic measure of the Markov chain
Xt , since in this case we can apply our lower bounds provided in ref. 14.

Recall, that in ref. 14 we derived our lower bounds for a rather gen-
eral class of Markov chains assuming the following conditions:

H1. There exists a sequence of finite open partitions �k of �, k� 1,
such that �k≺�k+1 for each k�1 , and maxA∈�k diamA → 0 as k → ∞ (
in particular B is the minimal σ -algebra generated by partitions �k , k�
1 );

H2. For any k�1 , x ∈�, B ∈�k,

P (x , B) :=Px (X1 ∈B)>0. (2.4)

H3. For any k�1, A∈�k , B ∈�
k+1 , x, y ∈B,

P (x,A)=P (y,A) . (2.5)

Under this general framework we proved the following lower bound
closely related to the subject of the present paper.

Proposition 2.3. Suppose that a Markov chain Xt satisfies the con-
dition A0 and the conditions H1–H3. Let µ be an ergodic invariant mea-
sure with respect to the chain Xt . Then for any initial distribution µ0 and
for any open with respect to the weak topology neighborhood U of µ we
have

Pµ0{ξT ∈U}� exp(−( Sµ0(µ)+ δ ) T )

provided T �T (δ).

Proof. This is, actually, Corollary 3.2 of ref. 14.

Remark 2.4. It was pointed out in ref. 14 that traditional PCA
models considered, for instance, in refs. 4, 5, 15 and 18, satisfy our condi-
tions H1–H3 (and, clearly, the condition A0).

Remark 2.5. As we have observed in Remark 2.2, the value of
the functional Sµ0(µ) depends, generally speaking, on the choice of the
sequence �k (while this sequence, clearly, could be chosen in a more than
one way). Therefore, in order to provide the large deviations estimates
of Propositions 2.1 and 2.2 in their strongest version, one should try to
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pick up the partitions �k in such a way, that the both propositions hold
simultaneously, bridging the gap between the upper and the lower bounds.
Keeping in mind this observation, we will formulate our main result.

Introduce some metric on M(�) generating the weak topology. Let
Uδ(µ) be the ball of radius δ >0 (with respect to this metric) centered at
µ∈M(�) .

Theorem 1. (the large deviations principle for the ergodic mea-
sures). Suppose that a Markov chain Xt , a measure µ0 ∈M(�), and a
sequence of finite open partitions �k of �, k � 1, satisfy the conditions
A0, A1 and H1–H3. Let µ be an ergodic invariant measure with respect
to the chain Xt . Then

lim
δ→0

lim sup
T→∞

ln Pµ0{ ζT ∈Uδ(µ) }
T

= lim
δ→0

lim inf
T→∞

ln Pµ0{ ζT ∈Uδ(µ) }
T

= −Sµ0(µ) .

Proof. The statement follows immediately from Propositions 2.1 and
2.3.

3. APPLICATIONS TO PCA

In this section we will apply our general results to some traditional
PCA models. In order to make the present paper more self-contained,
recall the general model of PCA considered in Section 4 of ref. 14, where
we followed the approach of refs. 4, 5, 15 and 18. Namely, let K be a finite
set. Set �=KZ

d
for some d�1. For any 
⊂
1 ⊂Z

d let π
 : K
1 →K


be the natural projection. For any ϕ ∈K
 set

A
 (ϕ)={γ ∈� : π
(γ )=ϕ}. (3.1)

Clearly, for any finite 
⊂ Z
d the subsets {A
 (ϕ) : ϕ ∈K
} form a finite

partition of �. Moreover, the family of sets A
 (ϕ) for all possible 
 and
ϕ∈K
 serves as a sub-base for the standard product discrete topology on
� metrizable in the usual way. Namely, for any z= (z1, . . . , zd)∈Z

d intro-
duce the norm

∥∥z∥∥ = max1�i�d |zi | . Then the product topology on � is
induced by the metric

ρ( γ , γ ′ )=
∑
z∈Zd

2−‖z‖ρ̃( γ (z), γ ′ (z) ), γ , γ ′ ∈�, (3.2)
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where ρ̃(s1, s2) = 0 if s1 = s2, ρ̃(s1, s2) = 1 otherwise, for any s1, s2 ∈ K
(considering a configuration γ ∈ � as a function γ : Z

d →K). It is well
known that � equipped with the metric ρ is a compact. We assume that a
�-valued Markov chain Xt, t ∈Z

+, satisfies the following conditions:
C1. For any z ∈ Z

d a finite neighborhood N(z)⊂ Z
d of z is defined

together with a local transition kernel P z : KN(z)×K→ (0,1). More pre-
cisely, for any η∈KN(z) a probability distribution P z(η, ·) is defined on K.
Recall that the elements of N(z) are called the neighbors of z∈Z

d ;
C2. The transition probability kernel P(·, ·) of Xt has the following

property: for each x ∈� , each finite 
⊂Z
d , and each ϕ ∈K
,

P(x, A
 (ϕ))=
∏
z∈


P z(πN (z )(x), ϕ(z) ). (3.3)

C3. There exists an integer n0 �1 such that for each z∈Z
d ,

N(z)⊆
{
z′ ∈Z

d :
∥∥z− z′∥∥�n0

}
. (3.4)

Remark 3.1. Notice, that the condition C1 includes, in particular,
the fact that P z(η, z) > 0 for any η ∈ KN(z), s ∈ K. Clearly, this fact,
together with C2 yields P(x, A
 (ϕ))>0 for any x∈�, each finite 
⊂Z

d ,

and every ϕ ∈K
.

Remark 3.2. It has been shown in ref. 14 that PCA model satisfying
the conditions C1–C3 automatically satisfies the conditions A0 and H1–
H3 formulated in Section 2 of the present paper provided the sequence of
partitions �k is properly chosen, which can be done in a natural way. Now
we are going to show that one can choose the sequence �k , k�1, in such
a way that the assumptions A0 and A1 are satisfied, provided the condi-
tion C3 is replaced by some more restrictive condition C4 (see below in
this section). However¸ as we have pointed out in Remark 2.5, in order
to obtain the optimal value of the functional Sµ1(µ2), that is, to meet the
conditions of our Theorem 1, one should choose the sequence �k , k� 1,
in such a way that the assumptions A0 and A1 are satisfied simultaneously
with H1–H3. We are going to show that such a choice is possible for some
classes of PCA. Still, we will have to choose our sequence of partitions in
a slightly more complicated way, than in ref. 14.

Since our main purpose is to illustrate some concrete application of
our general results, we will restrict our consideration to the case when
d=1, that is, �=KZ. Consequently, we should adapt our notations to this
case.
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Notations. For γ ∈ �, z ∈ Z denote by γz the z coordinate of γ .
For any given a � b ∈ Z denote [a, b] = { z∈Z : a� z�b} and �[a, b] =
K [a, b] , then π[ a , b ] is the natural projection from � to �[a, b]. Simi-
larly, if [a, b] ⊂ [a1, b1] where a1 � b1 ∈ Z, we will denote by π[ a , b ] the
natural projection from �[a1, b1] to �[a, b]. More precisely, for each γ =
( . . . , γ−1 , γ0 , γ1, . . . )∈� or γ = (γa1 , γa1+1, . . . , γb1)∈�[a1, b1] one has

π[ a , b ]( γ )= ( γa , γa+1 , . . . , γb ).

For the sake of simplicity, we will also use the notation πa=π[a, a]. Finally,
similarly to (3.1), we will use the notations

A[a, b] (ϕ)=
{
γ ∈� : π[ a , b ] (γ )=ϕ

}
(3.5)

for any given ϕ ∈�[a, b] , a � b∈Z and

Aa ( s )= {γ ∈� : πa (γ )= s}

for any given s ∈K , a ∈Z.

Remark 3.3. Let B be the Borel σ -algebra of �. Clearly, the family
of sets A[a, b] (ϕ) for all possible ϕ ∈�[a, b] , a � b∈Z generates B.

The main condition of this section is
C4. The phase space �=KZ, that is d=1. Moreover, there exists an

integer n0 �1 such that for each z∈Z,

N(z)= [ z+1, z+n0]. (3.6)

Remark 3.4. Observe, that the condition C4 yields C3. A sim-
ple class of PCA satisfying the conditions C1, C2 and C4, with K =
{0,1}, n0 = 1, was introduced by Wasserstein in ref. 20 for a different
purpose. Later, it was pointed out by Föllmer in ref. 15, that, in some
cases, Wasserstein’s example permits infinitely many invariant measures.
This example plays an important role in this paper and it will be described
in details in the next section 4.

Now we reformulate the conditions C1, C2 and C4 in the form more
suitable for our purpose. Let d=1, K={s1, s2, . . . , sm0}, then C1, actually,
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means that for any z∈Z, η∈KN(z) we are given a finite sequence of num-
bers P z(η, sm) > 0, 1 �m�m0, such that

∑
1�m�m0

P z(η, sm)=1. More-
over, by C2 and C4, one has

P(γ, A[a, b] (ϕ) ) = Pγ
{
π[a, b] (X1)=ϕ

}
=

∏
z∈[a, b]

P z
(
π[z+1, z+n0](γ ), ϕz

)
(3.7)

for any γ ∈ �, ϕ = ( ϕa , ϕa+1 , . . . , ϕb ) ∈ �[a, b] , a, b ∈ Z. In particular,
when a=b, the formula (3.7) takes the form

Pγ {πa (X1)= s}=Pa (
π[a+1, a+n0](γ ), s

)
(3.8)

for any γ ∈�, s ∈K.
Remark 3.5. Due to Remark 3.3, the Markov chain Xt is, actually,

completely defined by the formula (3.7), and, moreover, this formula is
equivalent to the conditions C1, C2 and C4.

Notice, that by (3.7), for all a, b∈ Z, for each ϕ ∈�[ a, b ] , η∈�[ a+1, b+n0] ,
and for any γ , γ̃ ∈A[ a+1, b+n0 ] (η) ,

P ( γ, A[a, b] (ϕ) )=P( γ̃ , A[a, b] (ϕ) ), (3.9)

which enables us to introduce the notation

P(η, A[a, b] (ϕ) )=P(γ, A[a, b] (ϕ) ) (3.10)

for each η∈�[ a+1, b+n0 ] , provided γ ∈A[a+1, b+n0] ( η ).
The main purpose of this section is to show that the Markov chain

Xt satisfying the conditions C1, C2 and C4 automatically satisfies the con-
ditions of Section 2 (provided the corresponding sequence of partitions is
properly chosen), which will allow us to reformulate our general results
for the specific situation described in the present section. However, first
we should prove some auxiliary result concerning our chain Xt , which is,
actually, a generalization of the formula (3.9).

Proposition 3.1. Let Xt be a Markov chain satisfying the condi-
tions C1, C2 and C4. Let a, b∈Z, t ∈Z

+, and ϕ∈�[ a, b ] , η∈�[ a+t, b+t n0] ,.
Then for any γ , γ̃ ∈A[ a+t, b+t n0 ] (η) ,

Pγ
{
π[a, b] (Xt )=ϕ

}=Pγ̃
{
π[ a, b ] (Xt )=ϕ

}
. (3.11)
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Proof. For t=1 the formula (3.11) coincides with (3.9). Now we can
complete the proof by induction in t ∈Z

+. Indeed, suppose that the state-
ment is true for some t ∈ Z

+and for any a′, b′ ∈ Z, each ϕ ∈�[ a′, b′ ], η ∈
�[ a′+t, b′+t n0] and every γ , γ̃ ∈A[ a′+t, b′+t n0] (η). Then for any given a, b∈
Z, ϕ ∈ �[ a, b ] , η ∈ �[ a+1+t, b+n0+t n0] and all γ , γ̃ ∈ A[ a+1+t, b+(1+t ) n0] (η)

by the Markov property and the notation (3.10) we obtain, setting
a′ = a +1, b′ =b +n0, that

Pγ
{
π[a, b]

(
Xt+1

)=ϕ}
=

∑
ϕ′∈�[ a+1, b+n0 ]

Pγ
{
π[a+1, b+n0] (Xt )=ϕ′}P(ϕ′, A[a, b] (ϕ) )

=
∑

ϕ′∈�[ a+1, b+n0 ]

Pγ̃
{
π[a+1, b+n0] (Xt )=ϕ′}P( ϕ′, A[a, b] (ϕ) )

=Pγ̃
{
π[a, b]

(
Xt+1

)=ϕ}
.

Remark 3.6. Due to the last assertion, we can introduce the follow-
ing convenient notation :

P [a, b]( η, ϕ , t )=Pγ
{
π[ a, b ] (Xt )=ϕ

}
(3.12)

provided γ ∈A[ a+t, b+t n0] (η) , where ϕ ∈�[ a, b ] , η ∈�[ a+t, b+t n0] , a, b ∈ Z,
and t ∈Z

+.

Proposition 3.1 yields that in order to meet the condition A1, it is
enough to pick up an invariant measure µ0 ∈M(�) such that it is ψ-mix-
ing (see ref. 3), or, more precisely, it satisfies the following conditions: for
any a � b∈Z, ϕ ∈�[a, b],

µ0 (A[a, b] (ϕ))>0 (3.13)

and for each ε>0 there exists an integer m(ε)>0 large enough such that
if 
1, 
2 are finite subsets of Z, dist(
1, 
2)� m(ε), and ϕ1 ∈K
1 , ϕ2 ∈
K
2 , then ∣∣∣∣ µ0 (A
1 (ϕ1)∩A
2 (ϕ2) )

µ0 (A
1 (ϕ1))µ0(A
2 (ϕ2) )
− 1

∣∣∣∣� ε. (3.14)

Notation. Denote by Mψi(�) the set of all the measures µ ∈M(�)
invariant with respect to the Markov chain Xt and satisfying the condi-
tions (3.13) and (3.14).
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Remark 3.7. Note, that we are talking above about space ψ-mixing
though we are interested about large deviations of the Markov chain Xt
in time. Observe, also that if the Markov chain Xt satisfies the conditions
C1, C2 and C4 and µ∈M(�) is invariant with respect to Xt, then by (3.7)
for any a � b∈Z, ϕ ∈�[a, b],

µ0 (A[a, b] (ϕ) )

=
∑

η∈�[a+1, b+n0]

µ0 (A[a+1, b+n0] (η))P ( η, A[a, b] (ϕ) )

� min
η∈�[a+1, b+n0]

P(η, A[a, b] (ϕ) ) �αb−a+1
0 >0,

where α0 = minη∈�[z+1, z+n0], a�z�b, s∈K P
z(η, s). Therefore, the condition

(3.13) is automatically satisfied. Moreover, one can easily verify that the
similar fact is true when C4 is replaced by C3, even when d >0.

Now we are going to establish the following important property of
measures belonging to the class Mψi(�).

Proposition 3.2. Let Xt be a Markov chain satisfying the condi-
tions C1–C3 ( with d=1). Then each measure µ∈Mψi(�) is ergodic with
respect to Xt .

Proof. Let � = �1 ∪ �2, where �1 ,�2 are two nonempty disjoint
Borel measurable subsets of � invariant with respect to the kernel P(·, ·),
i.e., for each γ ∈�i , i=1 , 2 ,

P ( γ, �i ) =1 . (3.15)

Our goal is to prove that for each µ ∈ Mψi(�) either µ(�1) = 0 or
µ(�1) =1. We will divide the proof into three steps.

Step 1. Choose some γ = (. . . , γ−1 , γ0 , γ1, . . . ) ∈�1 and let η ∈ � be
such that ηz=γz for each integer index z provided | z |�N for someN �0. We
claim that η∈ �1. Indeed, for each cylindrical subset of the form A[−m,m] (ϕ),
and by C2 and C3 for any given ϕ ∈�[−m,m] , m>N + n0,

P(γ, A[−m,m] (ϕ) )

P (ηA[−m,m] (ϕ) )
=

∏
z∈[−m,m]

P z
(
πN (z)( γ ), ϕz

)
P z

(
πN (z)( η ), ϕz

)
=

∏
z∈[−N−n0,N+n0]

P z
(
πN (z)( γ ), ϕz

)
P z

(
πN (z)( η ), ϕz

)
since πN (z)( γ )=πN (z)( η ), provided | z |>N + n0.
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Therefore,

C−1
N � P(γ, A[−m,m] (ϕ) )

P (ηA[−m,m] (ϕ) )
�CN , (3.16)

where

CN =
(

max
z∈[−N−n0,N+n0]

max
ζ, ζ ′∈N (z), s∈K

P z (ζ, s)

P z (ζ ′, s)

)2N +2n0+1

>0.

Since the estimate (3.16) holds for each cylindrical subset A[−m,m] (ϕ) such
that ϕ∈�[−m,m] and m>N+ n0 , and since these subsets generate the Borel
σ -algebra B of �, it follows that:

C−1
N � P(γ, A )

P (ηA)
�CN

for each A ∈B . In particular,

C−1
N � P(γ, �2 )

P ( η,�2 )
�CN ,

which together with (3.15) yields P(η, �2 )=0, and, therefore, using (3.15)
again, η∈ �1.

Step 2. For a given n>0 denote by B̃n the sub-σ -algebra of B gen-
erated by the family of functions πz (·) , | z |�n+1. Let m>0, and let ϕ∈
�[−m,m]. We claim that for each ε>0 and for each K ∈ B̃m+m(ε),

µ(A[−m,m] (ϕ) )µ(K ) (1− ε)
�µ(A[−m,m] (ϕ)∩ K )
�µ(A[−m,m] (ϕ) )µ(K ) (1+ ε), (3.17)

where m(ε) has been defined in (3.14). Clearly, it is enough to prove
(3.17) for each set K ∈ B̃m+m(ε) of the form K = A[m+m(ε), b ] (ξ1) ∩
A[ −b ,−m−m(ε)] (ξ2) , where b > m + m(ε), and ξ1 ∈ �[m+m(ε), b ], ξ2 ∈
�[ −b ,−m−m(ε)]. However, for such sets the claim follows immediately
from (3.14).

Step 3. Now we will show that �1 ∈ B̃n for each n > 0. Indeed,
for a given n > 0 fix some ϕ0 ∈ �[−nn] and define a function F : � →
A[−n ,n] (ϕ0) in the following way: for each γ ∈� let η=F(γ ) be the unique
η ∈ A[−n ,n] (ϕ0) such that ηz = πz (γ ) for each integer index z provided
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| z | � n+ 1. Clearly, F is a B̃n-measurable map, since its value is com-
pletely defined by the values of the functions πz (·) , | z | � n+ 1. There-
fore, for each A ∈ B we have F−1(A) ∈ B̃n. However, by the definition
of F, and according to the conclusion of Step 1, γ ∈ �1 if and only if
F(γ ) ∈ �1 ∩A[−n ,n]. Thus, F−1(�1) = �1, and, therefore, �1 ∈ B̃n. Fur-
thermore, by (3.17), for each m> 0, any ϕ ∈�[−m,m], and every ε > 0 we
have

µ(A[−m,m] (ϕ) )µ(�1 ) (1− ε)
� µ(A[−m,m] (ϕ)∩ �1)

�µ(A[−m,m] (ϕ) )µ(�1 ) (1+ ε).

However, since we can chose ε > 0 arbitrary small, this inequality yields,
for each m>0 and each ϕ ∈�[−m,m],

µ (A[−m,m] (ϕ) )µ(�1 ) =µ(A[−m,m] (ϕ)∩ �1),

which, actually, means that for each m the event �1 is independent of
the algebra generated by the partition A[−m,m] (ϕ), ϕ∈�[−m,m] . Hence, �1
is independent of the σ -algebra generated by all cylinder sets to which
it itself belongs, and so µ(�1) = (µ(�1))

2 which sais that µ(�1) = 1 or
=0.

Remark 3.8. In Section 4 we will demonstrate an important class
of examples where the set Mψi(�) is not empty. It is plausible that
Mψi(�) �=∅ also in a more general situation.

Conjecture. Let Xt be a Markov chain satisfying the conditions C1,
C2 and C4. Then the set Mψi(�)is not empty.

Now we are going to derive some properties of measures from
Mψi(�) assuming that C1, C2 and C4 are satisfied, which will later enable
us to use the results of Section 2.

Proposition 3.3. Let Xt be a Markov chain satisfying the condi-
tions C1, C2 and C4, and let µ0 ∈Mψi . Let a� b∈Z , ε>0, and denote
tε= b−a +m(ε), where m(ε) has been introduced in (3.14). Then for each
integer c� a , each integer n� 1, and any sequence ϕ0 , ϕ1 , . . . , ϕn−1 ∈
�[ a, b ] , ϕn ∈�[ a, c ],
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Pµ0


 ⋂

0�i�n−1

{
π[ a, b ]

(
Xi tε

)=ϕi
}⋂{

π[ a, c ]
(
Xntε

)=ϕn
}

� (1+ ε)n µ0
(
A[ a, c] ( ϕn )

) ∏
0�i�n−1

µ0
(
A[ a, b] ( ϕi )

)
. (3.18)

Proof. Since µ0 is an invariant measure of the Markov chain Xt , we
have, using the notation (3.12),

µ0
(
A[a, b] (ϕ)

)
=Pµ0

{
π[ a, b ] (Xt )=ϕ

}
=

∫
�

Pγ
{
π[ a, b ] (Xt )=ϕ

}
µ0( dγ )

=
∑

η∈�[ a+t, b+t n0]

µ0
(
A[a+t, b+t n0] (η)

)
P [a, b]( η, ϕ , t ) (3.19)

for any a, b∈Z, for each t ∈Z
+ and for every ϕ ∈�[ a, b ].

Next, observe, that by the condition (3.14), for each ε > 0 and for
any givena1 � b1 <a2 � b2 ∈ Z, satisfying a2 − b1 � m(ε) and any ϕ1, ∈
�[a1, b1] , ϕ2 ∈�[a2, b2],

µ0 (A[a1, b1] (ϕ1)∩A[a2, b2] (ϕ2))� (1+ ε)µ0 (A[a1, b1] (ϕ1))µ0 (A[a2, b2] (ϕ2)).

(3.20)

Now we will prove the proposition by induction in n� 1. First, we dem-
onstrate the proof for n=1. In this case by (3.11) and the Markov prop-
erty the left part of (3.18) takes the form

Pµ0

({
π[ a, b ] (X0 )

=ϕ0
}⋂{

π[ a, c ]
(
Xtε

)=ϕ1
})

=
∫
A[ a, b]( ϕ0 )

Pγ
{
π[ a, c ]

(
Xtε

)=ϕ1
}
µ0( dγ )

=
∑

η∈�[ a+tε , c+tε n0]

µ0
(
A[ a b ] ( ϕ0 ) ∩ A[ a+tε, c+tεn0] ( η )

)
×P [a, c]( η, ϕ , tε ) (3.21)

for any given ϕ0 ∈ �[ a, b ] , ϕ1 ∈ �[ a, c ] (where we use the notation (3.12)).
However, since a + tε − b = m(ε), we have, by (3.20), that for any η ∈
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�[ a+tε, c+tε n0],

µ0
(
A[ a b ] ( ϕ0 ) ∩A[ a+tε, c+tεn0] ( η )

)
� (1+ ε)µ0

(
A[ a b ] ( ϕ0 )

)
µ0

(
A[ a+tε, c+tεn0] ( η )

)
. (3.22)

Therefore, by (3.21), (3.22) and (3.19),

Pµ0

({
π[ a, b ] (X0 )=ϕ0

}⋂{
π[ a, c ]

(
Xtε

)=ϕ1
})

� (1+ ε)µ0
(
A[ a b ] ( ϕ0 )

)
×

∑
η∈�[ a+tε , c+tε n0]

µ0
(
A[ a+tε, c+tε n0] ( η )

)
P [a, c]( η, ϕ1 , tε )

= (1+ ε)µ0
(
A[ a b ] ( ϕ0 )

)
µ0

(
A[a, c] (ϕ1)

)
,

proving the proposition for the case n=1 .
Now, suppose that the proposition is true for some n� 1, for each inte-
ger c′ � a and for any sequence ϕ′

0 , ϕ
′
1 , . . . , ϕ

′
n−1 ∈�[ a, b ] , ϕ

′
n∈�[ a, c′ ]. Let

c� a ( c∈Z ), and let ϕ0 , ϕ1 , . . . , ϕn ∈�[ a, b ] , ϕn+1 ∈�[ a, c ], then by (3.11)
and the Markov property

Pµ0


 ⋂

0�i�n

{
π[ a, b ]

(
Xitε

)=ϕi
}⋂{

π[ a, c ]
(
X(n+1) tε

)=ϕn+1
}

=
∑

η∈�[ a+tε , c+tε n0]

Pµ0

(
An[ a, b ] ( ϕ0 , . . . , ϕn )∩

{
π[ a+tε, c+tε n0]

(
Xntε

)= η
})

×P [a, c]( η, ϕn+1 , tε ), (3.23)

where we set, for a given sequence ϕ0 , ϕ1 , . . . , ϕn ∈�[ a, b ] ,

An[ a , b ] ( ϕ0 , . . . , ϕn )=
⋂

0�i�n

{
π[ a, b ]

(
Xi tε

)=ϕi
}
.

Next, for each given η∈�[ a+tε, c+tε n0] define the set

�(η, ϕn) = {η̃ = (
η̃a , η̃a+1 , . . . , η̃c+tε n0

)∈�[ a, c+tε n0] : (η̃ a , . . . , η̃ b)

= ϕn,
(
η̃ a+tε , . . . , η̃ c+tε n0

)= η },

which is not empty since a+ tε� b+1.
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Now, assuming that the proposition is true for a given n� 1 and for
each integer c′ � a, we can write setting c′ = c+ tε n0,

Pµ0

(
An[ a, b ] ( ϕ0 , . . . , ϕn )∩

{
π[ a, c ]

(
Xntε

)= η
})

=
∑

η̃∈�(η,ϕn)
Pµ0


 ⋂

0�i�n−1

{
π[ a, b ]

(
Xi tε

)=ϕi
}∩{

π[ a, c+tε n0 ]
(
Xnt0

)= η̃
}

� (1+ ε)n
∑

η̃∈�(η,ϕn)
µ0

(
A[ a, c+tε n0 ] ( η̃ )

) ∏
0�i�n−1

µ0
(
A[ a, b] ( ϕi )

)

= (1+ ε)n
∏

0�i�n−1

µ0
(
A[ a, b] ( ϕi )

)
µ0

(
A[a, b] ( ϕn )∩ A[a+tε , c+tε n0] ( η )

)
.

(3.24)

However, using again the definition of tε together with the formula (3.20),
it follows:

µ0
(
A[a, b] ( ϕn )∩ A[a+tε , c+tε n0] ( η )

)
� (1+ ε)µ0

(
A[a, b] ( ϕn )

)
µ0

(
A[a+tε , c+tε n0] ( η )

)
. (3.25)

Bringing together the formulas (3.23)–(3.25), and, finally, using (3.19),
we obtain

Pµ0


 ⋂

0�i�n

{
π[ a, b ]

(
Xitε

)=ϕi
}⋂{

π[ a, c ]
(
X(n+1) tε

)=ϕn+1
}

� (1+ ε)n+1µ0
(
A[a, b] ( ϕn )

) ∏
0�i�n−1

µ0
(
A[ a, b] ( ϕi )

)
×

∑
η∈�[ a+tε , c+tε n0]

µ0
(
A[a+tε , c+tε n0] ( η )

)
P [a, c]( η, ϕn+1 , tε )

= (1+ ε)n+1µ0
(
A[ a, c]

(
ϕn+1

)) ∏
0�i�n

µ0
(
A[ a, b] ( ϕi )

)
,

completing the proof.

Observe that, for technical reasons, the last proposition is formulated
in a slightly more general way, than it is really needed. It is more conve-
nient for our purpose to reformulate this proposition in the following final
form.
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Corollary 3.4. Let a � b ∈ Z , ε > 0, and denote tε = b − a +
m(ε), where m(ε) has been introduced in (3.14). Denote by B[ a, b ] the
σ -algebra generated by the partition

{
A[a, b] (ϕ) : ϕ ∈�[a, b]

}
. Then for each

integer n� 1, and for any sequence fi : �→ R , 0 � i�n, of B[ a, b ]-mea-
surable random variables,

Eµ0


 ∏

0�i�n
fi

(
Xi tε

)� (1+ ε)n
∏

0�i�n
Eµ0fi.

Proof. Setting c=b in the last proposition, we obtain for each inte-
ger n� 1, and any sequence ϕ0 , ϕ1 , . . . , ϕn ∈�[ a, b ] ,

Pµ0


 ⋂

0�i�n

{
π[a, b]

(
Xi tε

)=ϕi
}� (1+ ε)n

∏
0�i�n

µ0
(
A[a, b] (ϕi)

)
, (3.26)

which yields the assertion of the corollary.

Next, in order to meet the conditions of Section 2, one should intro-
duce a proper sequence of partitions. Namely, choose �k , k � 1, to be
the partition of � generated by the sets A[−Q(k ), k] (ϕ) for all possible ϕ ∈
�[−Q(k ),k] (with A[a, b] (ϕ) and �[ a ,b ] introduced at the beginning of this
section) and let

lim
k→∞

Q(k )

k
=0. (3.27)

Now we can formulate the main result of this section.

Theorem 2. Let Xt be a Markov chain satisfying the conditions C1,
C2 and C4, and let µ0 ∈Mψi . Let �k , k�1, be the sequence of partitions
of � introduced above. Then

(a) The conditions A0 and A1 are satisfied. Moreover, for any closed
with respect to the weak topology subset W of M (�),

lim sup
T→∞

lnPµ0 {ζT ∈W }
T

�− inf
ν∈W

Sµ0(ν). (3.28)



Large Deviations for Probabilistic Cellular Automata II 863

(b) Suppose, in addition, that n0 = 1, and limk→∞Q(k ) = ∞, then
the conditions H1–H3 are also satisfied. Moreover, let µ be an ergodic
measure with respect to the Markov chain Xt, and let Uδ(µ) be the ball
of radius δ>0 (with respect to some metric on M(�) corresponding to the
weak topology) centered at µ∈M(�) . Then

lim
δ→0

lim sup
T→∞

ln Pµ0{ ζT ∈Uδ(µ) }
T

= lim
δ→0

lim inf
T→∞

ln Pµ0{ ζT ∈Uδ(µ) }
T

= −Sµ0(µ) . (3.29)

Proof. (a) Clearly, � =KZ is a compact space with respect to the
standard product topology which can be introduced by the metric (3.2)
which for d=1 has the form

ρ( γ , γ ′) =
∑
z∈Z

2−|z|ρ̃(γz , γ ′
z) (3.30)

for any γ , γ ′ ∈�, where ρ̃(s1, s2)=0 if s1 = s2, and ρ̃(s1, s2)=1 otherwise.
Thus, A0 is trivially satisfied. Next, substituting a=−Q(k ), b=k in Cor-
ollary 3.4, and setting t (k, ε)= b− a +m(ε)= k+Q(k ) +m(ε) for each
given ε > 0 (where Q(k )satisfies (3.27)), we obtain for all integers n, k�
1, and for any sequence fi : �→R , 0 � i�n of �k-measurable functions
the following formula:

Eµ0


 ∏

0�i�n
fi

(
Xi t(k, ε)

)� (1+ ε)n
∏

0�i�n
Eµ0fi,

which together with the fact that limk→∞ t (k, ε)/k = 1 yields A1. Now
(3.28) follows by Corollary 2.2.

(b) If limk→∞Q(k ) = ∞, then by (3.30), the sequence of partitions
�k , k�1, satisfies the condition H1. On the other hand, if n0 =1, the for-
mula (3.9) yields H3. By Remark 3.1, the condition H2 is also satisfied.
We can apply, therefore, Theorem 1, obtaining (3.29).

4. THE MAIN EXAMPLE

Next, we are going to describe a specific example of the situation
when the lower bounds of the Donsker–Varadhan type cannot hold true.
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We adapt for this purpose an example introduced by Wasserstein and, lat-
ter, considered by Föllmer for different purposes (see also Remark 3.5).
Suppose that we are given a sequence of real numbers 1

2 <pz<1, where z∈
Z, then we can define the local transition kernels P z for any z∈Z, s, s′ ∈
{0,1} by

P z(s, s′)=
{
pz if s= s′,
1−pz otherwise. (4.1)

Define a Markov chain Xt evolving on a phase space �={0,1}Z with
the transition probability kernel P ( · , · ) given by the formula

P(γ, A[a, b] (ϕ) )=Pγ
{
π[a, b] (X1)=ϕ

}=
∏

z∈[a, b]

P z
(
γz+1, ϕz

)
(4.2)

for any γ ∈�, ϕ = ( ϕa , ϕa+1 , . . . , ϕb )∈�[a, b] , a, b∈Z. Clearly, the con-
ditions C1, C2 and C4 are satisfied with n0 = 1, and, moreover, the for-
mula (4.2) is a particular case of (3.7).

The simplest particular case of measures from Mψi(�) are the product
invariant measures of Xt . More precisely, recall, that µ∈M(�) is called a
product measure if for any ϕ = ( ϕa , ϕa+1 , . . . , ϕb )∈�[a, b] , a � b∈Z,

µ {A[a, b] (ϕ)}=
∏

z∈[a, b]

µ {Az (ϕz)}. (4.3)

Denote by Mpi(�) the set of all the product measures µ∈M(�) invariant
with respect to the Markov chain Xt . The family Mpi(�) was described in
ref. 15 in the following way. Let 0� r�1. Denote for any z∈Z, s ∈{0,1},

Dzr ( s )=



1
2 +

(
r− 1

2

)
dz if s=1,

1
2 −

(
r− 1

2

)
dz if s=0,

where dz = ∏
i�z (2pi −1). Obviously, Dzr ( s) �= 0. Introduce the product

measure νr ∈M (�) by the formula

νr {A[a, b] (ϕ)}=
∏

z∈[a, b]

Dzr (ϕz) (4.4)

for any ϕ = ( ϕa , ϕa+1 , . . . , ϕb )∈�[a, b] , a, b∈Z.
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It is easy to verify by a direct computation that each measure defined
by (4.4) belongs to the set Mpi(�), and, moreover, Mpi(�) consists of all
the measures νr , 0� r�1.

Assume that

d0 =
∏
i�0

(2pi −1)>0 (4.5)

and let 0� r0 �= r1 �1, then our condition (4.5) yields νr0 �= νr1 . In particu-
lar, it means that the transitional kernel (4.2) has infinitely many invariant
measures. Now, as in Section 3, choose �k, k�1, to be the partition of �
generated by the sets A[−Q(k ), k] (ϕ) for all possible ϕ ∈�[−Q(k ),k], where

lim
k→∞

Q(k ) =∞, lim
k→∞

Q(k )

k
=0 (4.6)

(say, Q(k ) = [√
k
]

for each integer k�1). The main result of this section
is the following.

Proposition 4.1. Let Xt be the Markov chain defined by (4.2) such
that the condition (4.5) is satisfied, �k, k�1, be the sequence of partitions
of � introduced in the previous paragraph, and µ0 ∈Mpi(�). Then

(a) the conditions A0, A1, and H1–H3 are satisfied,

(b) The class Mpi(�) consists of all the measures of the form νr ,
0 � r � 1, defined in (4.4). Moreover, let µ0 = νr0 , µ1 = νr1 ∈Mpi(�) for
some 0� r0 , r1 �1 such that r0 �= r1, 0<r0 <1, then

Sµ0(µ1)= r1 ln
(
r1

r0

)
+ (1− r1) ln

(
1− r1
1− r0

)
>0.

(For the special cases r1 = 1 or r1 = 0, we set, as usual, 0 ln 0 = 0, and if
r0 =1 or r0 =0, r0 �= r1, then Sµ0(µ1)=∞.)

Proof.

(a) This follows immediately from Theorem 2.

(b) Clearly, for each k�1 we can write

Hµ1‖µ0(�k)=Eµ1Gµ1,µ0, k, (4.7)
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where the measurable function Gµ1,µ0, k : �→ [0,∞] is given by the for-
mula

Gµ1,µ0, k(γ ) = ln
µ1 (A[−Q(k ) , k] (ϕ))

µ0 (A[−Q(k ) , k] (ϕ))

provided γ ∈A[−Q(k ), k] (ϕ), for each ϕ ∈�[−Q(k ), k] , while Hµ1‖µ0(�k ) is
defined in Section 2. Therefore, by (4.4),

Gµ1,µ0, k(γ ) = ln
νr1 (A[−Q(k ), k] (ϕ))

νr0 (A[−Q(k ), k] (ϕ))
= ln

∏
−Q(k )�z�k Dzr1(γz)∏
−Q(k )�z�k D

z
r0(γz)

=
∑

1�z�k
gz( γ ) +

∑
−Q(k )�z�0

gz( γ ), (4.8)

where the functions gz : �→ [0,∞] are defined by the formula gz( γ )=
ln

(
Dzr1(γz)/D

z
r0
(γz)

)
for any γ ∈ �, z ∈ Z. Thus, by (4.7), (4.8) and the

definition of Dzr ( s ) we have for any k�1,

Hµ1‖µ0(�k ) =
∑

1�z�k
Eµ1gz +

∑
−Q(k )�z�0

Eµ1gz

= Rn+
∑

1�z�k


(

1
2

+
(
r1 − 1

2

)
dz

)
ln


 1

2 +
(
r1 − 1

2

)
dz

1
2 +

(
r0 − 1

2

)
dz




+
(

1
2

−
(
r1 − 1

2

)
dz

)
ln


 1

2 −
(
r1 − 1

2

)
dz

1
2 −

(
r0 − 1

2

)
dz





 , (4.9)

where

Rk =
∑

−Q(k)�z�0


(

1
2

+
(
r1 − 1

2

)
dz

)
ln


 1

2 +
(
r1 − 1

2

)
dz

1
2 +

(
r0 − 1

2

)
dz




+
(

1
2

−
(
r1 − 1

2

)
dz

)
ln


 1

2 −
(
r1 − 1

2

)
dz

1
2 −

(
r0 − 1

2

)
dz





 ,

which is well defined and finite for any 0 � r0 , r1 � 1, since 0<dz < 1 for
each z∈Z .
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Recall that dz = ∏
i�z (2pi −1) for each integer z ∈ Z, and, there-

fore, there exists a finite limit d−∞ = limz→−∞ dz. Moreover, clearly,
0�d−∞<1. Therefore, there exists a finite limit

lim
k→∞

1
Q(k)

Rk =
(

1
2

+
(
r1 − 1

2

)
d−∞

)
ln


 1

2 +
(
r1 − 1

2

)
d−∞

1
2 +

(
r0 − 1

2

)
d−∞




+
(

1
2

−
(
r1 − 1

2

)
d−∞

)
ln


 1

2 −
(
r1 − 1

2

)
d−∞

1
2 −

(
r0 − 1

2

)
d−∞


 , (4.10)

which together with (3.27) yields

lim
k→∞

1
k
Rk =0. (4.11)

Since the assumption (4.5) immediately yields limz→∞ dz=1, we derive by
(2.2), (4.10) and (4.11), that

lim
k→∞

1
k
Hµ1‖µ0(�k)= r1 ln

(
r1

r0

)
+ (1− r1) ln

(
1− r1
1− r0

)
<∞

provided 0<r0 < 1. Clearly, by Jensen inequality, Sµ0(µ1) > 0, since r0 �=
r1. Finally, if r0 =1 or r0 =0, then the condition r0 �= r1 yields

lim
k→∞

1
k
Hµ1‖µ0(�k)= lim

k→∞
1
k
Hµ1‖µ0(�k)= ∞ .

Now we can reformulate Corollary 2.2 for our case.

Corollary 4.2. Let Xt be the Markov chain defined by (4.2) such
that the condition (4.5) is satisfied, and µ0 ∈Mpi(�). For any closed with
respect to the week topology subset K of M (�),

lim sup
T→∞

lnPµ0 {ζT ∈K}
T

�− inf
ν∈K

Sµ0(ν). (4.12)

Proof. This is a particular case of Theorem 2(a).

Moreover, we actually can formulate the large deviations principle
for measures fromMpi(�), proving that the lower bounds of Donsker–
Varadhan type do not hold in this case.
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Corollary 4.3. Let (4.5) holds true and µ1 �= µ0 ∈Mpi(�). Then

lim
δ→0

lim sup
T→∞

ln Pµ0{ ζT ∈Uδ(µ1) }
T

= lim
δ→0

lim inf
T→∞

ln Pµ0{ ζT ∈Uδ(µ1) }
T

=−Sµ0(µ1) <0

where Uδ(µ) is the ball of radius δ > 0 (with respect to some metric on
M(�) corresponding to the weak topology) centered at µ∈M(�) .

Proof. The assertion follows from Theorem 2 and Proposition 4.1.

5. PROOF OF PROPOSITION 2.1

In order to prove Proposition 2.1 we need the following result.

Proposition 5.1. Suppose that a Markov chain Xt and a measure
µ0 ∈M(�) satisfy the conditions A0 and A1. Then for any integer T , k�
1, for each ε>0 and for any �k-measurable function f : �→ (0,∞) such
that Eµ0f = 1,

Eµ0


 ∏

0�j�T
f

1
t (k,ε)

(
Xj

)�M(f ) exp(
T +1
t (k, ε)

ln(1+ ε) ),

where M(f ) =maxγ∈� f (γ )and t (k, ε) was introduced in A1.

Proof. We can write T = n t (k, ε)−1+ r, where n= [(T +1)/t (k, ε)] ,
r < t(k, ε). Since M(f )�1 we have

Eµ0


 ∏

0�j�T
f 1/t (k,ε) (Xj

)�M(f )Eµ0


 ∏

0�j�n t (k,ε)−1

f 1/t (k,ε) (Xj

) .
(5.1)

Next, for each 0� m � t (k, ε)−1 introduce the random variable

Dm =
∏

0� j�n−1

f 1/t (k,ε) (Xj t(k,ε)+m
)
.
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Then, by Jensen’s inequality,

Eµ0


 ∏

0�j�n t (k,ε)−1

f 1/t (k,ε) (Xj

)

= Eµ0


 ∏

0�m� t (k,ε)−1

Dm




=Eµ0


exp


 1
t (k, ε)

∑
0�m�t (k,ε)−1

t (k, ε) ln Dm







� Eµ0


 1
t (k, ε)

∑
0�m� t (k,ε)−1

exp (t (k, ε) ln Dm)




= 1
t (k, ε)

∑
0�m� t (k,ε)−1

Eµ0D
t(k,ε)
m . (5.2)

But, for each 0 � m � t (k, ε)− 1, combining the definition of Dmwith the
condition A1 ( in particular, using the fact that µ0 is an invariant measure
of the Markov chain Xt ), we have

Eµ0D
t(k,ε)
m = Eµ0


 ∏

0� j�n−1

f
(
Xj t(k,ε)+m

)

= Eµ0


 ∏

0� j�n−1

f
(
Xj t(k,ε)

)
� (1+ ε)n (

Eµ0f
)n= (1+ ε)n. (5.3)

Now (5.1)–(5.3) yield the required inequality.

Next, we can complete the proof of Proposition 2.1. Let µ0 ∈M(�)
be a measure satisfying the conditions A0 and A1. For each µ ∈M(�)
and each integer k�1 define the �k-measurable function Gµ,k : �→R ∪
{−∞} by the formula

Gµ,k(γ ) = ln
µ(A)

µ0(A )

provided γ ∈A, A ∈�k .
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Observe that in our case we can rewrite the definition (2.1) in the
form

Hµ‖µ0(�k)=µ(Gµ,k). (5.4)

Observe, that Gµ,k is not, in general, a continuous function (more pre-
cisely, it can take the value −∞, since µ(A) can vanish for some A ∈�k).
For this reason, we have to define a somewhat more complicated functions
Gµ,k, δ : �→R (for each given δ>0) by the formula

Gµ,k, δ(γ )= ln
(
δ µ0(A )+ (1− δ)µ(A)

µ0 (A )

)
(5.5)

provided γ ∈A, A ∈�k . Clearly, Gµ,k, δ is continuous since the partition
�k is open. Since the logarithmic function is concave we have for each
γ ∈�,

Gµ,k, δ(γ )� (1− δ)Gµ,k(γ ) (5.6)

and, therefore, by (5.4),

µ(Gµ,k, δ)� (1− δ)Hµ‖µ0(�k) (5.7)

for each δ>0.
Observe, that if Sµ0(µ) = 0 the statement of Proposition 2.1 is obvi-

ous. Consider the case

0<Sµ0(µ) < ∞ .

In this case, by (2.2) and the assumption A1, for each given ε>0 we can
choose k=k(ε,µ)�1 large enough such that

1
t (k, ε4 )

Hµ‖µ0(�k) >Sµ0(µ) − ε

4
(5.8)

and so setting δ = δ(ε,µ)= (ε/4Sµ0(µ)) in (5.7), we obtain

1
t (k, ε4 )

µ(Gµ,k, δ)� (1− δ)
(
Sµ0(µ) − ε

4

)
>Sµ0(µ)−

ε

2
. (5.9)
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Now, for each ε > 0 we are able to define an open (with respect to the
weak topology) neighborhood U(µ, ε) of µ∈M(�) by the formula

U(µ, ε)=
{
ν ∈M(�) : ν (Gµ,k, δ)>µ(Gµ,k, δ)− ε

4

}
. (5.10)

(Here, and till the end of this section, k=k(ε,µ) and δ = δ(ε,µ).)
In order to show that the neighborhoods U(µ, ε)are appropriate for

Proposition 2.1, consider �k-measurable functions fε : �→ (0,∞) given
by the formula fε = exp(Gµ,k, δ). By (1.1) and the definition of fe , for
each integer T >0,

exp
(

T

t (k, ε4 )
ζT (Gµ,k, δ)

)
= exp


 1
t (k, ε4 )

T−1∑
j=0

Gµ,k, δ
(
Xj

)
=

∏
0�j�T−1

f
1/t (k, ε4 )
ε

(
Xj

)
. (5.11)

On the other hand, one can verify directly that Eµ0fε = 1. Since all the
conditions of Proposition 5.1 are satisfied, we obtain by (5.11) that for
each integer T � 1,

Eµ0

(
exp

(
T

t (k, ε4 )
ζT (Gµ,k, δ)

))

=Eµ0


 ∏

0�j�T−1

f

1
t (k, ε4 )
ε

(
Xj

)
�M(fε ) exp

( T +1
t (k, ε4 )

ln(1+ ε

4
)
)
, (5.12)

where M(fε )=maxγ∈� fε (γ ) and ε is replaced by ε/4.
Since t (k, ε/4)�1, then using (5.9), (5.10), (5.12) and the Chebyshev

inequality we obtain that for each integer T � 1,

Pµ0{ ζT ∈U (µ , ε) }
=Pµ0

{
exp

(
T

t (k, ε4 )
ζT (Gµ,k, δ)

)
> exp

(
T

t (k, ε4 )

(
µ(Gµ,k, δ)− ε

4

))}
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�Pµ0

{
exp

(
T

t (k, ε4 )
ζT (Gµ,k, δ)

)
> exp

(
T

(
Sµ0(µ)−

3ε
4

))}

�Eµ0

(
exp

(
T

t (k, ε4 )
ζT (Gµ,k, δ)

))
exp

(
−T

(
Sµ0(µ)−

3ε
4

))

�M(fε ) exp
(
T +1
t (k, ε)

ln(1+ ε

4
) −T

(
Sµ0(µ1)− 3ε

4

))
.

Therefore,

lim sup
T→∞

ln Pµ0{ ζT ∈U (µ , ε) }
T

�−Sµ0(µ1)+ ε

proving the proposition for the case 0<Sµ0(µ) < ∞. The case Sµ0(µ) =
∞ can be proved by, essentially, the same argument with obvious modifi-
cations.

6. PCA WITH DONSKER–VARADHAN’S LARGE DEVIATIONS

ESTIMATES

The phenomenon described in Section 5 is not a general feature of
PCA, and we will consider in this section some simple class of PCA’s for
which the lower bounds of the Donsker–Varadhan type hold true, that is
the corresponding upper estimates are optimal. Consider, first of all, the
following general setup, somewhat similar to assumptions of ref. 14. Let
Xt be a Markov chain satisfying the conditions A0, H1 and H2 of Sec-
tion 2 together with the following condition

H3* For any k�1 , A, B ∈�k , x, y ∈B,

P (x, A)=P (y, A) ,

where the sequence of finite open partitions �k of �, k � 1, was intro-
duced in H1.

The main example. Let Xt be a Markov chain on �=KZ
d
, d�1 sat-

isfying the conditions C1 and C2 of Section 3. Introduce the set of cubes:


(k )={z′ ∈Z
d :

∥∥ z′∥∥�k}, k�1, (6.1)

where, recall,
∥∥z∥∥=max1�i�d |zi | for each z=(z1, . . . , zd)∈Z,d and replace

C3 by the following condition:
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C3* There exists n1 �0 such that

N(z)⊆
(k )

for any z∈
(k ) , k>n1.

Define the following sequence of partitions:

�k ={A
(k+n1) (ϕ) : ϕ ∈K
(k+n1)}, k�1 (6.2)

using the notations introduced at the beginning of Section 3. Obviously,
the conditions C1, C2 and C3* imply A0, H1, H2 and H3*. In order to
provide a more specific illustration of the condition C3*, we would like
to indicate the following two particular cases satisfying this condition:

(a) The direct product case. Let N(z)=z for each z∈Z
d , that is, each

site could be considered separately, and, due to C2, the Markov chain Xt
could be considered as a direct product of Markov chains with a phase
space K defined at each site. Clearly, C3* is satisfied with n1 =0.

(b) The “inside oriented” case. Let d = 1, and there exists n1 �0 such
that N(z)= [ z−n1, z] for each z�0, and N(z)= [ z, z+n1] for each z<0.
In this case, the notation (6.1) takes the form 
(k )= [−k, k ], and, more-
over, N(z)⊆
(k ) for each z ∈
(k ), k > n1. Therefore, C3* is satisfied.
Observe, that this case is, in some sense, opposite to the case considered
in Section 3 under the condition C3.

Next, we return to our general setup. Let Xt satisfy the assump-
tions A0, H1, H2 and H3*. Our main objective is to obtain the lower
large deviations bounds for (1.1), since the upper bounds follow by gen-
eral Donsker and Varadhan results presented in ref. 8. However, it turns
out that in this case it is easier to begin with a study of the large devi-
ations on the level of pairs of empirical measures, since it enables us to
use standard properties of the relative entropy, combining them with some
well established large deviations results. We will need the following addi-
tional notations.

Notations. Let M(�×�) be the set of all Borel probability measures
defined on �×�. Next, for any T ∈ Z

+ we will define the empirical pair
measure �T : �→M (�×�) by the formula

�T = 1
T

T−1∑
t=0

δ
(
Xt , Xt+1

)
, (6.3)
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where δ (x , y) is the unit measure concentrated at a point ( x , y )∈�×�.
For each ν∈M(�×�) the left and right marginal measures νL, νR ∈M (� )

are defined by νL(A )= ν (A×�) and νR(A )= ν (�×A). Next, we will
introduce the set of the measures with symmetrical marginal distributions
MS = {ν ∈M (� ×�) : νL = νR}. Furthermore, for each ν ∈M(� × �) we
define ν P ∈M(�×�) by the formula

νP (B×A)=
∫
B

P (x, A) νL(dx) . (6.4)

Let D (ν ‖νP ) be the divergence of ν with respect to νP (see ref. 11), which
is also known as the relative entropy or the Kullback–Leibler information
in different applications. More precisely, we will use the following defini-
tion of the divergence: if ν�νP , then

D (ν ‖νP )=
∫
�×�

ρ ln ρ dνP =
∫
�×�

ln ρ dν, (6.5)

where ρ is the Radon–Nikodym derivative of ν with respect to νP , and
D (ν ‖ νP )= ∞, otherwise. Observe, that the assumption H2 implies the
condition ν�νP .

Next, introduce the finite Borel partition�k of � ×� consisting of all
sets of the form A ×B, A,B∈�k. We will consider also the divergences of
ν with respect to νP restricted to the algebra generated by the partitions
�k. Namely, define

Dk ( ν ‖νP )=
∫
�×�

ρk ln ρk dνP =Hν ‖ νP (�k), (6.6)

where ρk is the Radon–Nikodym derivative of ν with respect to νP restricted
to the algebra generated by the partitions �k and the relative entropy on
the right hand side of (6.6) was defined by (2.1). Furthermore, applying
Corollary 5.2.3 of ref. 11 together with the assumption H1, one has, for
each ν ∈M(�×�)

lim
k→∞

Dk ( ν ‖νP )= sup
k�1

Dk ( ν ‖νP )=D (ν ‖νP ). (6.7)

Remark 6.1. The definition (6.5) of the divergence is equivalent to
another definition given in ref. 11, formula (5.2.10) and Lemma 5.2.3.
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Remark 6.2. For a more comprehensive discussion of large devia-
tions for the empirical pair measure, and, more generally, for the multi-
variate empirical measures and their connection to the relative entropy, see
Ellis(12) and references there (observe that our notation νP corresponds to
the notation µ1 ⊗ π of ref. 14 provided µ1 is the left marginal of ν ∈
M(�×�) ). Some facts concerning the empirical pair measure for PCA are
provided in Section 2 of ref. 14.

The main result of this section is the following theorem.

Theorem 3. (a) For any open with respect to the week topology
W ⊆M(�×�) and for any x ∈�,

lim inf
T→∞

ln Px {�T ∈W }
T

�− inf {Ĩ (ν) : ν ∈W },

where the functional Ĩ (·) is defined by Ĩ (ν)=D (ν ‖ νP ) if ν ∈MS, and
Ĩ (ν)=∞, otherwise.

(b) For any open with respect to the week topology U ⊆M(�) and
for any x ∈�,

lim inf
T→∞

ln Px {ζT ∈U}
T

�− inf { I (µ) : µ∈U },

where I (µ) was defined by the formula (1.2).

In order to prepare some background for the proof of this theorem, as
well as for Section 7, we will review some known results and introduce
some auxiliary notations.

Auxiliary Markov chains. Due to H3*, for each k � 1 and for any
A, B ∈�k ,we can define transition probabilities Pk(B, A) by the formula

Pk(B, A)=P (x, A) ,

provided x ∈B. For each k�1 we can introduce the natural map Gk :�→
�k such that Gk(x )=A ∈�k, provided x ∈A. Next, for each k � 1 we
can define an auxiliary Markov chain Y kt =Gk(Xt ), t ∈Z

+, with the phase
space �k , such that

P
{
Y kt+1 =A

∣∣∣Y kt =B
}

=Pk(B, A)
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for any A, B ∈�k , t ∈ Z
+. Clearly, for each integer m� 1 and for each

sequence of sets A0, A1, . . . ,Am ∈�k,

Px {X1 ∈A1, . . . ,Xm ∈Am}=PA0

{
Y k1 =A1, . . . , Y

k
m=Am

}

provided x∈A0. For each Markov chain Y kt define the sequence of the pair
empirical measures

�kT = 1
T

T−1∑
t=0

δ
(
Y kt , Y

k
t +1

)
, T ∈Z

+, (6.8)

where δ (A, B ) is the unit measure on the finite set �k×�k concentrated
on (A,B ) ∈�k ×�k. In other words, for each g : �k ×�k → R and for
each T ∈Z

+,

�kT ( g ) = 1
T

T−1∑
t=0

g
(
Y kt , Y

k
t +1

)
. (6.9)

Clearly, there exists a natural one-to-one correspondence between the
sets �k and �k ×�k.Furthermore, observe, that for each k � 1 and for
each �k- measurable function f : � ×�→R there exists exactly one func-
tion f̃ :�k ×�k → R such that f (x, y)= f̃ (Gk( x ) ,Gk( y ) ), and, more-
over, for each T ∈Z

+,

�kT ( f̃ ) =�T (f ). (6.10)

Large deviations for the pair empirical measure of Markov chain with
a finite state space. For the convenience of the reader, we will recall some
well known results on large deviations of finite Markov chains (see, for
instance, Chapter 3 of ref. 10 or Theorem 1.4 of ref. 12). Let Yt be a
Markov chain on a finite state space �, and let π(i, j) > 0 be the cor-
responding transition probabilities, that is, π(i, j) =P {Y1 = j |Y0 = i} for
each i, j ∈�. Introduce, similarly to (6.4), the sequence of the pair empir-
ical measures

�̃T = 1
T

T−1∑
t=0

δ
(
Yt , Yt+1

)
, T ∈Z

+, (6.11)
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where δ ( i, j ) is the unit measure on the finite set �×� concentrated on
(i , j ) ∈�×�. Let M (�×�) be the family of all probability measures
defined on the finite set �×�. For each η∈M(�×�) let ηL, ηR ∈M (�)

be the left and right marginal measures, respectively. Then, for any open
with respect to the weak topology subset W̃ of M (�×�) and for each
i ∈�,

lim inf
T→∞

ln Pi
{
�̃T ∈ W̃}
T

�− inf
η∈W̃

I2 (η) , (6.12)

where I2 : M (�×�)→ [0,∞] is defined by

I2 (η)=
∑

η (i, j) log
η (i, j)

ηL(i)π(i, j)
(6.13)

for each η∈M(�×�) with ηL =ηR, where the sum is taken over all the
pairs ( i , j ) ∈�×� such that ηL(i) �= 0 (as usual, we set 0 log 0 = 0). If,
on the other hand, η∈M(�×�) is such that ηL �=ηR, we set I2 (η)=∞.

Similarly, for any closed with respect to the weak topology subset G̃ of
M (�×�) and for each i ∈�,

lim sup
T→∞

ln Pi
{
�̃T ∈ G̃}
T

�− inf
η∈G̃

I2 (η) . (6.14)

Now we are in a position to prove the main results of this section.

Proof of Theorem 3. (a) We will divide the proof of the statement
(a) into two steps.

Step 1. Let k � 1. By H2, Pk(B, A) > 0 for any A, B ∈�k , k � 1,
that is, the chains Y kt are irreducible Markov chains with finite state
spaces. Introduce the notation Mk

S = {η∈M (�k ×�k) : ηL =ηR}. Then, by
(6.12) and (6.13), for any open with respect to the weak topology subset
W̃ of M (�k) and for each A∈�k,

lim inf
T→∞

ln PA
{
�kT ∈ W̃}
T

�− inf
η∈W̃

I k (η) , (6.15)

where I k (η) is defined for each η∈Mk
S by

I k (η)=
∑

η (A, B) log
η (A, B)

ηL(A)Pk(A, B)
, (6.16)
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where the sum is taken over all the pairs (A, B) ∈ �k × �k such that
ηL(A) �=0; and I k (η)=∞, otherwise.

Next, for each ν ∈M (�×�) define ν̃k ∈M (�k ×�k) such that

ν̃k{ (A, B ) }= ν(A×B) (6.17)

for each A,B ∈�k. Let ν ∈MS , then, clearly, ν̃k ∈Mk
S. Moreover, due to

H3*, (6.4) and (6.6),

Dk ( ν ‖νP )=
∑

ν (A×B) log
ν (A×B)

νL(A)Pk(A, B)
, (6.18)

where the sum is taken over all sets of the form A×B , A,B ∈�k such
that νL(A) �=0. Thus, due to (6.17); (6.16) and (6.18), it follows by a direct
calculation, that for each ν ∈MS ,

I k(̃νk)=Dk ( ν ‖νP ) . (6.19)

Therefore, by (6.7), for each ν ∈MS,

I k (̃νk)�D (ν ‖νP )= Ĩ (ν) . (6.20)

Step 2. Let W ⊆M(�×�) be an open set with respect to the week
topology. Suppose that inf {Ĩ (

ν′) : ν′ ∈W }<∞, otherwise there is nothing
to prove. For a given ε>0 choose ν ∈W such that

Ĩ (ν) < inf {Ĩ (
ν′) : ν′ ∈W }− ε. (6.21)

For any k�1, β >0 define a neighborhood W
β
k of ν by

W
β
k =

⋂
B,A∈�k

{ν′ ∈M(�×�) : | ν′ (B×A)−ν(B×A) |<β}.

In view of Assumption H1, it is clear that we can choose k large enough
and β >0 small enough such that

W0 :=Wβ
k ⊂W. (6.22)
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Introduce the set W̃0 ⊂M (�k ×�k) in the following way:

W̃0 =
⋂

B,A∈�k
{η∈M (�k ×�k) : |η (B, A)−ν(B×A) |<β}.

Substituting the indicators of sets B×A∈�k in place of f in (6.10),
we see that �T ∈W0 if and only if �kT ∈ W̃0. Moreover, obviously, due to
the definition of ν̃k in (6.17), ν̃k ∈ W̃0. Therefore, for any x ∈�, T � 0, by
(6.15), (6.20)–(6.22),

lim inf
T→∞

lnPx {�T ∈W }
T

� lim inf
T→∞

lnPx {�T ∈W0}
T

= lim inf
T→∞

lnP
A0

{
�kT ∈ W̃0

}
T

�− inf
η∈W̃0

I k (η)

�−I k (̃νk)�−Ĩ (ν)�− (
inf {Ĩ (

ν′) : ν′ ∈W }− ε) .
Since ε > 0 can be chosen arbitrary small, this inequality completes the
prove of the statement (a).
(b) Using our notations, we will rewrite Definition (2.4) of ref. 8 in the
form

I (ν) = −inf { log
∫
�×�

f ( x, y )ν P ( dx, dy )

−
∫
�

log f ( x, y ) ν ( dx, dy ) : f ∈U2},

where ν ∈M(�×�) and U2 is the set of positive continuous functions on
�. Next, according to the formula (2.21) of ref. 8, for each µ∈M (�) ,

I (µ)= inf
ν∈Mµ

I (ν) , (6.23)

where Mµ=MS ∩ML
µ, M

L
µ ={ν ∈M (� ×�) : νL=µ}.

On the other hand, using Lemma 2.1 of ref. 7 it follows that I (ν)=
D (ν ‖νP ) for each ν ∈M(�×�), and, therefore, for each ν ∈ MS ,

I (ν)= Ĩ (ν) , (6.24)
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where Ĩ (ν) was defined in the statement (a). Now, taking into account
that Ĩ (ν)=∞ if ν /∈ MS , together with (6.23) and (6.24), we have that for
each µ∈M (�) ,

I (µ)= inf
ν∈ML

µ

Ĩ (ν) ,

where ML
µ was defined just after (6.23). Finally, the assertion (b) fol-

lows from the assertion (a) by the contraction principle (see, for instance,
ref. 10).

7. APPROXIMATE LARGE DEVIATIONS FOR PCA

In this section we will discuss a perturbative form of large deviations.
Namely, instead of a single process, we will consider a family of Markov
chains Xεt , 0 <ε�ε0, such that all the Markov chains satisfy the condition
A0 with the same phase space �, assuming, in addition, the following gen-
eral condition.

H4 There exists a Markov chain Xt satisfying the assumptions A0,
H1, H2 and H3*, and constants C0, C1> 0 such that for any k� 1 , A∈
�k , x ∈�, 0 <ε� ε0,

Px {X1 ∈ A} (1−C1ε)
C0k �Px

{
Xε1 ∈ A}

�Px {X1 ∈ A} (1+C1ε)
C0k.

Example. Without loss of generality, assume that K ={1, 2, . . . ,m0} .
For each 0 <ε�ε0 let Xεt be a PCA satisfying the conditions C1, C2 and
C3 with d=1 (i.e., �=KZ,) and with N(z)= [ z−n0, z+n0] for each z∈Z

and for some integer n0> 0. Furthermore, assume that for each z∈Z the
local probability kernel P z, ε : KN(z ) ×K → (0,1) is defined for each η ∈
KN(z) and for each j ∈K by

P z, ε( η , j ) = (1− ε)pη0j + ε

2m0

∑
0<| l |�m0

pηl j ,

where (pi j , 1 � i, j � m0) is a given probability matrix with positive
entries. Observe that by C2, for any given γ ∈� , ϕ ∈�[−k, k] , k >0,

Pγ
{
Xε1 ∈A[−k, k] (ϕ)

}
=P ε( γ, A[−k, k] (ϕ) ).

=
∏

z∈[−k, k]

P z, ε
(
πN (z )(γ ), ϕz

)
. (7.1)
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Introduce the sequence of partitions

�k ={A[−k, k] (ϕ) : ϕ ∈K [−k, k]}

for each integer k>0, where A[a, b] (ϕ) was defined in Section 3. Then the
processes Xεt can be considered as a perturbation of the product Markov
chain Xt defined on the same phase space with the transition probabilities
defined by the formula

Pγ
{
X1 ∈A[−k, k] (ϕ)

}
=P(γ, A[−k, k] (ϕ) )

=
∏

z∈[−k, k]

pzϕz . (7.2)

Clearly, Xt satisfies the conditions A0, H1, H2 and H3* with respect to
the sequence of partitions �k( actually, it is the “direct product” case
described in the main example of Section 6). Moreover, since pi j >0 , 1�
i, j �m0 it is clear that the condition H4 holds true due to (7.1) and
(7.2). We conjecture that when ε is small enough the large deviations of
the empirical measure of Xεt can be described precisely by the Donsker–
Varadhan rate functional for Xεt which would improve approximate large
deviations bounds derived below in this section which use the rate func-
tional for Xt .
Let us return to the general case of Markov chains Xεt , satisfying the con-
dition H4. Similarly to (1.1) and (6.3), for each 0 <ε� ε0 introduce the
sequence of the occupational measures

ζ εT = 1
T

T−1∑
t=0

δ
(
Xεt

)
, T ∈Z

+,

where δ (x) is the unit measure concentrated at a point x ∈ �, and the
sequence of the empirical pair measures

�εT = 1
T

T−1∑
t=0

δ
(
Xt,Xt+1

)
, T ∈Z

+,

where δ (x , y) is the unit measure concentrated at a point ( x , y )∈�×�.
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The main result of this section is the following.

Theorem 4. (a) Let G be a subset of M (�×�) closed with respect
to the weak topology, such that inf { Ĩ (ν) : ν ∈G }<∞. Then for any δ>0
there exists ε1(δ)>0, such that for each 0 <ε� ε1(δ) and for any γ ∈�,

lim sup
T→∞

ln Pγ
{
�εT ∈G}
T

�− inf { Ĩ (ν) : ν ∈G }+ δ,

where the functional Ĩ (·) was defined for the process Xt in Theorem 3 of
Section 6.

(b) Let W be a subset of M (�×�) open with respect to the weak
topology. Then for any δ>0 there exists ε2(δ)>0, such that for each 0 <
ε� ε2(δ) and for any γ ∈�,

lim inf
T→∞

ln Pγ
{
�εT ∈W}
T

�− inf { Ĩ (ν) : ν ∈W }− δ ,

where the functional Ĩ (·) was defined for the process Xt in Theorem 3 of
Section 6.

Remark 7.1. If inf { Ĩ (ν) : ν ∈G } = ∞, we can formulate the state-
ment in the following way. For any N>0 there exists ε1(N)>0, such that
for each 0 <ε� ε1(N) and for every γ ∈�,

lim sup
T→∞

ln Pγ
{
�εT ∈G}
T

�−N.

The proof is, basically, the same.

Remark 7.2. Theorem 4 gives approximate large deviations for Xεt
using the rate functional for the unperturbed process Xt itself since we
cannot prove the precise large deviations estimates for Xεt with its own
rate functional (though we conjecture that this can be done). Still, these
approximate large deviations bounds are also useful provided δ is much
smaller than inf { Ĩ (ν) : ν ∈W } and ε is sufficiently small.

In order to prove Theorem 4.1 we will need some auxiliary results.
First of all, similarly to the Section 6, for each k � 1 we can introduce
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the natural map Gk : � → �k such that Gk(x ) = A ∈ �k, provided x ∈
A. Next, for each k � 1, 0 < ε � ε0 we can define the processes Y k , εt =
Gk(X

ε
t ), t ∈ Z

+, with the sample space �k = �Z
+
k . For any k, n� 1 let

Tn
k be the algebra of subsets of �k generated by the events of the form{
Y
k, ε
1 =A1, . . . , Y

k, ε
n =An

}
, where A1, . . . ,An∈�k. Clearly, for any k, n�

1, each initial condition γ ∈ �, and every 0 < ε � ε0, the process Xεt
induces a probability measure P ε, kγ on Borel σ -algebra of �k in the natu-
ral way. Namely, let n�1, and

A=
{
Y
k, ε
1 =A1, . . . , Y

k, ε
n =An

}
∈Tn

k , (7.3)

where A1, . . . ,An ∈�k, then we can define

P ε, kγ (A) : = Pγ

{
Y
k , ε
1 =A1, . . . , Y

k , ε
n =An

}
= Pγ

{
Xε1 ∈A1, . . . ,X

ε
n ∈An

}
. (7.4)

On the other hand, since the process Xt satisfies the condition H3* of Sec-
tion 6, for each k�1 and for any A, B ∈�k ,we can define the transition
probabilities Pk(B, A) by the formula

Pk(B, A)=Px {X1 ∈ A} , (7.5)

provided x ∈B. Therefore, for any k, n� 1, and for each initial condition
A0 ∈�k,we can introduce a new independent of ε measure P k

A0
on the

Borel σ -algebra of �k = �Z
+
k in the following way:

P k
A0
(A) :=

∏
1�m�n

Pk(Am−1, Am) (7.6)

for each event A of the form (7.3). Clearly, the process Y
k , ε
t is a Mar-

kov chain on a phase space �kwith respect to the family of measures P k
A0
,

A0 ∈�k, defined on the sample space �k. More precisely,

P k
A0

{
Y
k , ε
t+1 =A

∣∣∣Y k , εt =B
}

=Pk(B, A)
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for any A, B ∈�k , t ∈Z
+. Similarly to (6.8) , for each k�1, 0 <ε�ε0 we

define the sequence of the pair empirical measures on the finite set �k ×
�k by

�
k,ε
T = 1

T

T−1∑
t=0

δ
(
Y
k , ε
t , Y

k , ε
t+1

)
, T ∈Z

+, (7.7)

where δ (A, B ) is the unit measure concentrated on (A,B ) ∈�k ×�k.

Observe, that according to the definition of Y k , εt , for any (A ,B ) ∈�k ×
�k,

�
k, ε
T { (A ,B ) }=�εT (A×B ). (7.8)

Furthermore , we can apply to this Markov chain the estimates (6.12) and
(6.14) of Section 6, and to obtain the lower bound (similarly to the esti-
mate (6.15)),

lim inf
T→∞

ln P k
A0

{
�
k,ε
T ∈ W̃

}
T

�− inf
η∈W̃

I k (η) (7.9)

for any open with respect to the weak topology subset W̃ of M (�k ×�k),
and the upper bound

lim sup
T→∞

ln P k
A0

{
�
k,ε
T ∈ G̃

}
T

�− inf
η∈G̃

I k (η) (7.10)

for any open with respect to the weak topology subset G̃ of M (�k ×�k) ,
where I k (η) was defined in (6.16). However, in order to apply these esti-
mates to the measures P ε, kγ , we will need the following.

Proposition 7.1. For any k, n� 1, 0 <ε� ε0, A0 ∈�k, γ ∈A0, and
for each event A∈Tn

k ,

P k
A0
(A) (1−C1ε)

C0k n�P ε, kγ (A)�P k
A0
(A) (1+C1ε)

C0k n.
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Proof. It is enough to prove the assertion for each A ∈ Tn
k of the

form (7.3). By (7.4)

P ε, kγ (A) = Pγ
{
Xε1 ∈A1, . . . ,X

ε
n ∈An

}
.

Therefore, the statement can be easily proved by induction with respect to
n�1, applying the Markov property, then the assumption H4 and, finally,
(7.5) together with (7.6).

The next result, is the main step in the proof of Theorem 4 (a).

Proposition 7.2. (a) For each ν ∈MS such that Ĩ (ν) <∞, any γ ∈
�and every δ > 0 there exist an open neighborhood U (ν, δ) of ν and
ε(ν, δ)>0 small enough such that for any 0 <ε� ε(ν, δ),

lim sup
T→∞

ln Pγ {�εT ∈U (ν, δ) }
T

�−
(
Ĩ (ν)− δ

2

)
.

(b) For each ν ∈MS such that Ĩ (ν)= ∞, every γ ∈ � and any N >

0 there exists an open neighborhood U (ν,N ) of ν and ε(ν, N)>0 small
enough such that for any 0 <ε� ε(ν, N),

lim sup
T→∞

ln Pγ {�εT ∈U (ν, N) }
T

�−N .

(c) For any ν ∈M (� ×�) such that ν /∈MS there exist an open with
respect to the week topology neighborhood U(ν) of ν and an integer T (ν)
large enough such that

Pγ
{
�εT ∈U(ν)} = 0 (7.11)

for each T � T (ν) , γ ∈�, 0 <ε� ε0.

Proof. (a) By the definition, Ĩ (ν)=D (ν ‖νP ). Therefore, according
to (6.7) , for each α > 0 we can fix an integer k = k( ν, α ) large enough
such that

∞>Dk ( ν ‖νP ) > Ĩ (ν)−α, (7.12)

where Dk ( ν ‖νP ) has been defined in (6.5).
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Similarly to (6.17), for the chosen k = k( ν, α ) define ν̃k ∈M (�k ×�k)
such that

ν̃k{ (A, B ) }= ν(A×B)

for each A,B ∈ �k, and consider an auxiliary set W̃
β
k ⊂ M (�k ×�k)

defined by

W̃
β
k =

⋂
B,A∈�k

{η∈M (�k ×�k) : |η { (B, A) }− ν̃k { (B, A) } |<β}.

Next, by (6.19),

I k(̃νk)=Dk ( ν ‖νP ) . (7.13)

Furthermore, by (6.16), the functional I k(η) can be considered as a con-
tinuous function of the variables η { (B, A) } , A,B ∈�k, provided η ∈Mk

S

(see the proof of Theorem 3 in Section 6), while I k(η) = ∞ for η �∈Mk
S .

Therefore, by (7.13), the definition of W̃ β
k and by (7.12) we can choose β=

β( ν, α )>0 small enough, such that

I k(η)> I k(̃νk)−α=Dk ( ν ‖νP ) −α� Ĩ (ν)−2α (7.14)

for each η∈ W̃ β
k .

Next, for the chosen k= k( ν, α ), β=β( ν, α ) define a neighborhood
W
β
k of ν by

W
β
k =

⋂
B,A∈�k

{ν′ ∈M(�×�) : | ν′ (B×A)−ν(B×A) |<β}.

Due to (7.8), �εT ∈Wβ
k if and only if �k,εT ∈ W̃ β

k . Therefore, by the defini-
tion of the measure P ε, kγ ,

Pγ {�εT ∈Wβ
k }=P ε, kγ {�k,εT ∈ W̃ β

k },

which, together with Proposition 7.1 and with the fact that {�εT ∈ W̃ β
k } ∈

T nk , yields for any T �1, 0 <ε� ε0, that

Pγ {�εT ∈Wβ
k }�P k

A0
{�εT ∈ W̃ β

k }(1+C1ε)
C0k T , (7.15)
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provided γ ∈A0, A0 ∈�k (since the choice of k and β is independent of
T and ε). On the other hand, by (7.10) and (7.14),

lim sup
T→∞

ln P k
A0

{
�
k,ε
T ∈ W̃ β

k

}
T

�− inf
η∈W̃ β

k

I k (η)�−(Ĩ (ν)−2α). (7.16)

Now, the statement follows immediately from (7.15) and (7.16), setting α=
δ/8 and U (ν, δ)=Wβ

k

(b) In this case

lim
k→∞

Dk ( ν ‖νP )=∞.

Therefore, in place of (7.12), we can fix an integer k = k( ν, M ) large
enough such that

Dk ( ν ‖νP ) >M +1. (7.17)

Now the proof proceeds just as in the previous case.
(c) See Proposition 2.1 of ref. 14.

Proof of Theorem 4. (a) Let γ ∈� and denote

I0 = inf{ Ĩ (ν) : ν ∈G}.

By Proposition 7.2, for each ν ∈G and δ > 0 we can pick up an open
neighborhood U0 (ν, δ) of ν and a number ε0(ν, δ)>0 small enough such
that for each 0 <ε� ε0( ν, δ ) there exists T ( ν, ε, δ )>0 such that

Pγ {�εT ∈U0 (ν, δ)}� exp(−(I0 − δ) T ) (7.18)

provided T �T ( ν, ε, δ ). Since G is a compact, we can find a finite collec-
tion of measures νi, 1� i� l, such that

K⊂
l⋃
i=1

U0 (νi, δ),
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(where l depends on δ>0). Therefore, for a given δ>0 and for each 0 <
ε� ε1( δ )=min1�i�l ε0( νi, δ ),

Pγ {�εT ∈G }�
l∑
i=1

Pγ {�εT ∈U0 (νi, δ)}� l exp(−(I0 − δ) T ) (7.19)

provided T �max1�i�l T ( νi, ε, δ ), and so,

lim sup
T→∞

lnPγ {�εT ∈G}
T

�−(I0 − δ).

(b) The proof of the lower bound is completely similar to the proof of
Theorem 3 (a) of Section 6, replacing the auxiliary processes �kT by �k,εT ,

and applying Proposition 7.1 in the final step of the proof.

Corollary 7.3. (a) Let V be a subset of M (�) closed with respect to
the week topology, such that infν∈V I (ν) <∞. Then for any δ > 0 there
exists ε3(δ)>0, such that for each 0 <ε� ε3(δ) and for each γ ∈�,

lim sup
T→∞

ln Pγ
{
ζ εT ∈V }
T

�− inf
ν∈V

I (ν)+ δ.

(b) Let U be a subset of M (�) open with respect to the week topol-
ogy. Then for any δ > 0 there exists ε3(δ)> 0, such that for each 0 <ε�
ε3(δ) and for each γ ∈�,

lim inf
T→∞

ln Pγ {ζT ∈U}
T

�− inf { I (µ) : µ∈U }− δ,

where I (µ) has been defined for the process Xt by the formula (1.2).

Proof. The proof is completely similar to the contraction principle
(see ref. 10).
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